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I. INTRODUCTION

Many familiar mathematical questions can be restated in the following
form: "When is A more complex than B, and how do you put the answer in
quantitative form?" This has been answered in a variety of ways, depending
on the category to which A and B belong. Two recursive functions have been
compared by their index numbers in any universal listing (Kolmogorov: see
171). In classical analysis, a function of three real variables sef:ms more
complicated than a function of only two, while a function with continuous
fourth derivatives seems simpler than one that is merely continuous.
Vitushkin discovered that the index nip is a useful measure of the complexity
of the entire class of functions of n real variables having continuous pth
derivatives 14, 5 ]. However, this approach is not appropriate if one is dealing
with functions that are merely continuous (p = 0), or when one is dealing
with individual functions and not classes. Moreover, one would like to use
the term "simple" for functions that can be approximated arbitrarily well by
simple functions, even though they themselves are not "simple."

Nor is it enough merely to count the number of variables. A function of
the form

F(x, y, z) = f( g(x, y), hey, z)) ( I )

is a function of three real variables, but since it is built from functions of two
variables, it ought to be quantitatively simpler than the general continuous
function of three variables.

Several years ago, I observed that such questions can also be stated in
terms of mapping diagrams (see II I). For example, consider those functions
of five variables that can be represented in the format

F(x, .1', z, u, v) =f(C/>(x, y. z), u, v)
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in terms of continuous functions of only three variables. First suppress (U. l')

by introducing Z = Cl R 1 j, and writing F(x, y. z. U, l') as F(x, y, z )(u, (.), so
that F is now seen as a function from RJ to Z. Then. (2) requires that
F = f 0 C/J. where C/J is a continuous function from R J to Rand / is a
continuous function from R to Z. Thus, (2) asks us to examine those maps F
from R] to Z which can be factored through R. as shown in the diagram
below:

R)----!-. R

1
z

Other examples can be treated in a similar way. For example, to examine
(I). first introduce special maps C/J from R 4 to R 1 of the form

C/J(t 1 , t1 , tJ, t4 ) = (g(tl' t1 ), h(tJ' t4 )):

R 1 XR 1 =R 4

<j hI $1
R X R = R 1

Then construct Xc R4, homeomorphic to R'1. by the special embedding
(x. y. z) --t (x, y. y, z). Then, the class of mappings F with the special
representation (I) can be regarded as those maps of X to R which factor
through R 1 by one of the special maps C/J. as shown below:

R

Examination of these suggests that one study a general factoring problem.
Choose spaces X. Y, and Z, and then within the class CI X. Z I of all
continuous mappings F from X into Z we identify the subclass . ~. of those F
that can be factored through Y. F = f 0 C/J. regarding these as "simple."

X~Y

,I
~

Z

The objective is to find properties that are characteristic of the maps in .~
and of those mappings that can be approximated uniformly by mappings in
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.~. In particular, we would like to know conditions on X, Y, and Z that
guarantee thatTy is a small subset of C[X, ZI, and find quantitative
estimates for the size of ,Ty •

The results in the present paper are only a beginning, intended to show
that useful theorems can be obtained in a number of cases related directly to
problems dealing with the approximate complexity of functions. The
approach is via Kolmogorov £-entropy and entropy dimension, and some of
the results obtained in Section 3 on dispersion functions may have wider
usefulness in the study of continuous mappings; the combinatorial lemma on
colored graphs may also be of interest, as may be the observations on
dimension increasing maps in Section 5.

2. HEURISTIC ARGUMENTS

Let X and Y be metric spaces and C[X, YJ the space of all continuous
maps from X into Y, with the uniform metric. We regard Yas simpler than
X if Y can be faithfully embedded in X but not conversely. In this case, any
tJ> E C[X, YJ must fail to be I-to-I, and must therefore compress some
complex aspect of X. If c(S) is an appropriate quantitative measure of the
complexity of subsets S of X, then since

X= U ep-Iy
yE}

we are led to hope that

c(X) = ~ c( Y) f X ~ average value of c( ep Iy)f

and dividing by c( Y), that

c(X)
max c( ep - 1.1') ) ~(-) .
)'EY C Y

(3)

Note that the right side is independent of tJ>.
This heuristic reasoning has led to the conjecture that when Y is simpler

than X, every admissible mapping tJ> from X into Y must have at l,east one
point-inverse tJ> -ly which achieves at least a certain minimal complexity,
independent of tJ>.

Results of this type already exist in the literature. If c(S) = 2dimIS), where
dimeS) is the classical topological dimension of S, then (3) holds since it is
equivalent to the assertion that any continuous map from a space X into a
space Y of smaller (finite) dimension must have a point-inverse of dimension
dim(X) ~ dime Y) 131.



254 R. CREIGHTON BUCK

(4)

For our purposes we need analogues of this, using a measure ciS) related
to Kolmogorov entropy. If S is an infinite subset of a compact metric space,
and 6> 0, then a 6-dispersed subset of S is a set Xl' Xl'"'' X m such that
d(x i , ):) ) 6 for all i '* j. Then, for ciS) we will use

N(S, 6) = the maximum number of points in a
6-dispersed subset of S.

The rate of increase of N(S, 6), as 6 decreases, describes the size or capacity
of S. If N(S, 6) ~ C6 P as 610, we say that S has entropy dimension p. An
II-cell has entropy dimension n. Sets in Rn with fractional entropy dimension
are easily constructed, and numerous examples can be seen in the fascinating
book by Mandelbrot [61.

If X and Yare metric spaces, with X compact, and cP E CfX, YI, set

M(CP, 6) = max N(CP [y,6).
\'E}'

(5 )

This is integer valued, and is the maximum 6 dispersion of any point-inverse
of CP. Finally, with the conjecture (3) in mind, we say that CfX, Y] admits a
dispersion function K(6) if it is true that K(6) is an unbounded increasing
function of 6 such that for all sufficiently small 6 and any mapping cP in
CfX, YI, M( cP, 6) ) K(6). In the next section, we show that certain classes of
mappings admit dispersion functions: we conjecture that this is always the
case when Y is simpler than X.

3. DISPERSION MAPPING THEOREMS

In this section, we obtain dispersion functions for the class of real valued
functions on a p-cell.

Let A and B be compact metric spaces, each arcwise connected, and let
X = A X E, with the metric

THEOREM L A dispersion function for C[X, R) is given by

K(6) = the smaller of N(A, 6), N(B, 6). (6)

Proof Let cP E CfX, R I. For any a E A, let Ba = 1a f X B, and consider
the image sets f/J(Ba ), Since B is connected, each is an interval fa of reals. If
the intersection of all these intervals is nonempty, choose a real number v in
the intersection and set S = f/J - I(v). Then S is a subset of X that meets each
of the sets Ba' Given 0 > 0, let N = N(A, 0) and choose points ak E A, k =
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1,2,..., N, that are 6-dispersed, and then bk E B so that x k = (a k , bk ) E S.
These form a 6-dispersed set of N points of S, and we have shown that

M((/J, 6) ~ N(S, 6) ~ N = N(A, 6).

Suppose now that n fa is empty. Choose a' and a" in A so that la' and Ia
are disjoint, and a real number v lying between these intervals. Again. set
S = (/J-I(V); any arc in X joining a point of Ba , and a point of Ba " must
intersect S. Given 6> 0, let N = N(B, 6) and choose N points bk in B, 6~

dispersed. Let 13 be an arc in A with end points a', a" and let 13k be the arc
13 X {bd in X, connecting Ba , and Ba ", and X k a point of 13k in S. Since fJi
and fJj are everywhere 6 apart in X, the N points X k are 6~dispersed in Sand
M((/J. 6) ~ N(S, 6) ~ N = N(B, 6), completing (6).

For a k-cell, we have N(fk, 1) = 2k, NW, 11m) = (m + 1)k, and in general.
N(Ik, 6) ~ 6- k

• If we factor a p-cell X as IP = A X B, where A and 11 are cells
of dimension lp/21 and p - Ip/21, Theorem 1 gives us:

COROLLARY. If 1= 10, 11, the class CW, R I has a dispersion function
K(6) with K(I/m) = (m + 1)lp/IJ and, as 61o, K(6) ~ 6- 1P/ 1 1.

This estimate is not best possible. The heuristic argument in Section 2
suggests that a correct value ought to be K(6) :::::; N(JP, 6)/N(I, 6) ~::; 6 -( P - 11.

We verify this next.

THEOREM 2. A dispersion function for C[JP, R] is given by K(6) =

I(C/c5)P 1/, where

We reduce the proof of this to a combinatorial problem on colored graphs,
which in turn is proved by induction on p. The elementary proof given below
was discovered after I had seen an elegant but much more complicated
argument by Andreas Blass, which also produced a far smaller value for C.

Proof Let n be an integer larger than 15 and 6 = 1/(n - 1). In the p-cell
f P, construct the regular rectangular lattice of vertices Pk spaced evenly with
separation 6; if k is the multi-index (k l' k l , ... , kp ), with 0(, k; (, p, then
Pk = 15k. Let (/J E C[X, R J and vk = (/J(P k ). If these nP real numbers are
arranged in increasing size, two possibilities arise. Suppose that at least a
third of these values coincide, all being equal to a number v. In this case.
S = (/J-l(V) contains a 6-dispersed subset of size nP/3, and M((/J, 6) ~ nP/3 >
K(c5), as given by (7). Suppose now that fewer than a third of the values Uk

are coincident; then we can choose a real number v, distinct from all the Uk

but such that at least a third of them are larger than L' and a third are
smaller. We will show that S=(/J-I(V) obeys N(S.c5)~K(r5).
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Color the lattice point Pk "red" if (/J(Pk ) = Uk > v and "blue" if (/J(Pd < L',

In the p-cell X, a line segment will be called an ..RB edge" if it is parallel to
an axis and its end points have different colors. Observe that any RB edge
must intersect S. and that any two disjoint RB edges are everywhere 0 apart:
thus, if we can find N mutually disjoint RB edges in X. we will have a 0
dispersed subset of S of size N.

LEMMA. Color the nf! regular lattice points of the p-cell red or blue in
such a way that at least {3nf! are of each color: a<{3 < 1/2. Then. the
number of disjoint RB edges is at least

(8)

Proof If P = 2. then the n2 lattice points in the unit square form n rows,
each of which is either solid red. solid blue. or mixed. Every mixed row
contains an RB edge so that if there are at least {3n mixed rows, the lemma
holds. Suppose instead that there are fewer than {3n mixed rows. The
remaining rows cannot all be solid blue for then there would be less than
(n )({3n) = {3n 2 red vertices in the square. contradicting the hypothesis. We
conclude that the square must then have at least one solid red row and one
solid blue row, and joining corresponding vertices. we obtain n RB edges.

Suppose now that the lemma has been proved for p cells. and consider a
colored (p + I )-cell having at least {3nf! f I vertices of each color. These lie in
n parallel sheets. each a p-cell. Call a sheet (mostly) red if it contains fewer
than {3nf!/2 blue vertices: a blue sheet is the dual. All other sheets are called
mixed. Suppose first that there are fewer than fJn/2 mixed sheets in the
(p + I I-cell. If there were no red sheets. then the total number of red vertices
would be less than

(fJn/2)(1 - {3/2) nf! + (n - {3n/2)(fJn P/2) <{3n lH
I.

which contradicts the hypotheses. Arguing symmetrically, there must exist at
least one red sheet and at least one blue sheet. Matching these sheets. there
must be at least

nf! - 2(fJ/2) nf! = (1 - fJ) nf!

red vertices that lie above or below a corresponding blue vertex. Joining
these. orthogonally to the sheets, we produce (1 - {3) nf! disjoint RB edges.
and since this number exceeds what is required by (8), the lemma holds.

The other alternative is that there are at least {3n/2 mixed sheets in the
(p + 1)-cell. We apply the lemma to each. observing that {3 has now been
replaced by fJ/2. Accordingly. each sheet contains at least
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disjoint RB edges. Among all the fJn/2 mixed sheets, there will be

2(fJn/2)p =21fJ 2-(P+ll!2\P
2 P(P-ll!2 n I

257

mutually disjoint RB edges, thus proving the lemma.
To complete the proof of Theorem 2. we apply the lemma with fJ = 1/3.
For the mapping class CW, RkJ. with p > k. the heuristic argument

suggests that a correct dispersion function ought to be of the form K(b) ~
Cb-(p-kl. However. we have not been able to obtain this. except as shown
above when k = 1. For the record, we record the following incomplete result
which is easily established by a homotopy argument.

THEOREM 3. If C/J E CWo R 2
). with P? 3. then M( C/J. I) ? 2.

4. THE CLOSURE OF,~

We return to the general problems discussed in the Introduction dealing
with the size of the class of factorable mappings between X and Z. Let X. Y.
and Z be metric spaces with X compact, and Y simpler than either X or Z.
Let ,~, be the class of mappings F from X into Z that can be factored
through Y. as shown below:

Z

F=foC/J, (9)

In this section. we examine the situation in which C/J is required to be
continuous. while f is unrestricted. We wish to find properties of the class '.~
which show that only a very restricted subclass of C!X, Z] can be uniformly
approximated by the mappings in ,Ty , In the next section, we reverse the
hypotheses. allowing C/J to be unrestricted but requiring that the functions f
obey a uniform Lipschitz condition.

THEOREM 4. Let Wk} be a sequence of mappings from X into Z.
converging uniformly to a continuous mapping g. Then. for any b > O.

M(g. b)? lim sup M(Fk , b).
k 'c<

( 10)

Proof Since M(F, 6) (; N(X. b) for any F: X --> Z. the right side of (10) is
an integer N, and there is a subsequence with M(Fk .6) = N for all n. Let
L1 c XI\' be the compact set of x = (Xl. X2 ..... XI\') such that IX i - xii? 6 for
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i '* j. Define a continuous function G on .d by G(x) = maxi.;! g(x;) - g(xJ.
Suppose that F belongs to the subsequence Wk }; since M(F. 15) = N. we can
choose a point x E.d and z E Z such that lex;) = z for all i = 1. 2..... N.
Then. for any i and j.

Ig(x i ) - g(x;)I,,:;; 1g(xi ) - zl + Iz - g(x;)1

,,:;; I g(xi ) -- F(.x';) 1 + iF(x;) - g(x;)1

and

G(x)":;; 211 g - Fil·

Since G is continuous on .d and WI! f converges to g, there must exist x E.d
such that G(x)=O. Accordingly, there must exist points X 1 .X2 ' .... x,. ()­
dispersed. with g(x l ) = g(x2 ) = ... = g(x\), showing that M( g. 15) ~ N.

Return to the mapping diagram (9), and observe that if F =f 0 C/J. then
any point-inverse for C/J is automatically a subset of a point-inverse for F. so
that M(F. 6) ~ M(C/J. 15).

THEOREM 5. Suppose that C/X, Y! admits the dispersion function K(6).
Then, K(J) is also a dispersion function for the uniform closure of the set
~ II C[X. Z I. In particular. if g is a continuous mapping from X into Z
with

. . M(g, ())
lIm mf ( l:) < I

b·O K u
(I I)

then g cannot be approximated uniformly by mappings FE T}.

Proof Since M(C/J,J)~K((j) and M(F,J)~M(C/J.(j) for any C/J in
C[X. Yj. K(J) is also a dispersion function for~. Applying the lemma. we
see that K(J) is automatically a dispersion function for the uniform closure
of .~., and must therefore be a lower bound for M( g, 15), if g can be
uniformly approximated by functions F in .~. (We note that the same
argument applies to subclasses of C[ X. Y]; if a function K(c5) can be shown
to be a dispersion function for the functions C/J in a subset '/ of C[X, YI,
then it is also one for the uniform closure of the class of mappings F: X --> Z
which factor through Y by means of some C/J E/.)

If we use the information in Theorem 2. we obtain:

COROLLARY I. Let n ~ m > I and suppose that g is a continuous
mapping from I" into R m such that
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Then, g cannot be approximated uniformly on r by mappings of the form
F(x) = f( ffl(x)) where f is an arbitrary function on R to R m and ffl is a
continuous real valued function on r.

The argument used in Theorem 4 can also be used to compute explicit
lower bounds for the distance from a given function g to the class .7~, when
(II) holds.

COROLLARY 2. If M( g, 60 ) < K(60 ) =N, then

d(g,.7";.);;:' 1 min max Ig(x;) - g(x;)l,
xl •...•xs 1•./

where 1x I ""'XN ~ is 60 dispersed.

Proof Since we must have M(g, 60 ) <N - I, the function G, introduced
in the proof of Theorem 4, does not vanish in the set LI and therefore has a
positive minimum y. If FE c7";. then, for an optimal choice of i and j,

(' <I g(x;) - g(x;)l <211 g ~ FII

and y/2 is a lower bound for the distance from g to .7";..
Computation of the number y depends on the explicit nature of the chosen

function g. Homeomorphisms provide trivial illustrations. We have
M(ffl, I) ;;:, 2[n/2j for any ffl E qr, R] and n;;:, 2. If g is the identity map of
I" onto itself, then this argument shows that its distance from .~ is at least
1/2. If n;;:, 3, Theorem 3 shows that the same holds for the class '~2' It does
not seem likely that these bounds are sharp. We note that g can be approx­
imated by the mapping F E.~ given by F(x) = (w, w,..., w), where x =
(t 1 , t2 , .. ·, tn ) and w=n-1L7tj, so that Ilg~FII=(l/2)/iiforn even and
(1/2) v'n - (I/n) when nis odd.

5. LIpSCHITZ MAPPINGS

We now take Z = X and examine the nature of mappings F of X into itself
which can be factored through Y as F = f 0 ffl, where ffl is now unrestricted
but f is required to be more than merely continuous.

(12 )

x

As before. Y is chosen of lower dimension than X. However, ffl can now be
I-to-l, and if Jwere unrestricted, every map of X into X could be factored as
shown, including the identity map. Of course, if J( Y) = X, J must be a
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dimension increasing map. It is known that there exist continuous maps of a
k-cell onto an m-cell for any nand m; the familiar Peano "space filling
curve" maps I onto 12 by a function f that is continuous, and is I-to-Ion an
uncountable subset of I. Accordingly, the identity map of 12 onto itself can
be factored through I as f 0 cP with f continuous. However, even a small
degree of smoothness for f changes the situation, as the next result shows.

THEOREM 6. Let X have entropy dimension p, and r have entropy
dimension q, and let f be a mapping from r into X of Lipschitz class a. Then.
f( n can have entropy dimension at most q/a, and thus f cannot be onto if
u > q/p.

Proof Let N(/( V), 6) = N and choose)'i E Y so that the points Xi = fUi)
form a 6-dispersed set of N points in f( V). If i * j, then

6 ~ IXi - .\) = If(Yi) ~ f(Yj)1

~ B I Y i -- y;i"

and 1 Yi -- )'jl >(6/B)I/0. Accordingly, the h form a (6/B)I/o dispersed set of
N points in Y. Since Y has entropy dimension q, N( Y, e) ~ Ce q, and
therefore

cB q
/ o

N(/( n, 6) = N ~ 6Q/ o

showing that f( Y) has entropy dimension at most q/a.
We conjecture that this result is the best possible, and that there are

mappings from I" onto 1m which belong to Lip(n/m), for every n < m;
indeed, it is easily seen that the Polya example of a Peano map from 10. I I
onto 12 is in Lip 1/2, as required.

Let Tt(a) be the class of mappings F from X into X which factor
through Y as f 0 CP, with f in Lip a, but cP unrestricted. Since any such map
F obeys F(X) cf(Y), we have an immediate corollary:

COROLLARY. If X and Y have entropy dimensions p and q, respectively.
with p > q, and if u > q/p, then .Tt(a) does not contain ClX, XI; indeed, no
member of it can obey F(X) = X.

To obtain a corresponding result for uniform approximation, we must
make a slight change; let Tt(a, B) be those F=fo CP, wherefE Lip(a, B).
with a fixed Lipschitz constant B for all f

THEOREM 7. Let X and Y have entropy dimensions p and q, with p > q,
and suppose that a > q/p. Then, ,Tt(a, B) is not uniformly dense in ClX, XI:
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every mapping g in C[X, Xl that can be uniformly approximated by the class
T't(a, B) must fail to be onto, since g(X) will have entropy dimension
smaller than p.

Proof Given J > 0, choose a set of N J-dispersed points in g(X), where
N = N(g(X), J). Suppose that there is FE .Tt(a, B) with II g - FII < J/3. Let
z; = g(x;), and set Yi = ct>(x;); then, if i *- j.

J ~ IZi - z;1 ~ 1g(x;) - F(x;)1 + IF(x;) ~ F(x;)1

+ IF(xJ) - g(x;ll

~ 211 g - FII + If(y;) - f(Y;ll

and

J
3 ~ B 1Yi - y;l".

Accordingly, the Yi form a set of N points of Y that are (J/(3B))lifl
dispersed, and

Since C, B, and q are independent of J, this shows that g(X) has entropy
dimension at most q/a, which by hypothesis is smaller than p. the dimension
of X.

There(are many obvious remaining questions about the size and nature of
the sets T't(a, B) and their relationship to the entire space C[X, X I.
Furthermore, the complexity measure N(S, J) and those derived from it are
not the only ones of interest in this context. It would also be interesting to
examine these questions in a category different from that of spaces and
continuous mappings.
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